Class	Index Number	Name
		〒加坡海星中学
******		MARIS STELLA HIGH SCHOOL

MARIS STELLA HIGH SCHOOL SEMESTRAL EXAMINATION TWO SECONDARY THREE

ADDITIONAL MATHEMATICS

14 October 2016

2 hours

Additional Materials: Writing paper (6 sheets)

INSTRUCTIONS TO CANDIDATES

Write your class, index number and name on all the work you hand in. Write in dark blue or black pen. You may use a pencil for any diagrams or graphs.

Do not use paper clips, highlighters, glue or correction fluid.

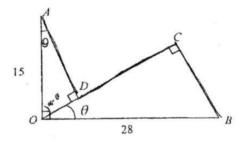
Answer all questions.

If working is needed for any question it must be shown with the answer.

Omission of essential working will result in loss of marks.

You are expected to use a scientific calculator to evaluate explicit numerical expressions. If the degree of accuracy is not specified in the question, and if the answer is not exact, give your answer to three significant figures. Give answer in degrees to one decimal place. For π , use either your calculator value or 3.142, unless the question requires the answer in terms of π .

At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question.


The total number of marks for this paper is 80.

This document consists of 5 printed pages and 1 blank page.

- 1. Without using the calculator, show that $\cos\left(\frac{5\pi}{12}\right) + \cos\left(\frac{\pi}{12}\right) = \frac{\sqrt{6}}{2}$. [4]
- 2. Express $\log_7 x \log_{49} (x 2) = \log_3 1$ in the form $ax^2 + bx + c = 0$ and hence explain why there are no real solutions to the equation. [4]
- 3 The length and the width of a closed rectangular tank are $(1 + \sqrt{2})$ m and $(3 \sqrt{8})$ m respectively. If the volume of the rectangular tank is 2 m³, find the height of the tank in the form $(a + b\sqrt{2})m$, where a and b are integers. [4]

4. If
$$\frac{1}{p} = \frac{\csc x - 1}{\cot x}$$
, prove that $p = \frac{\csc x + 1}{\cot x}$. Hence find $\cos x$ in terms of p . [5]

- 5. (i) Calculate the coordinates of the points of intersection of the graph y = |2x-5|-3 with the coordinates axes. [3]
 - (ii) Hence sketch the graph of y = |2x-5|-3. [2]
- 6. (i) Prove that $\csc 2\theta + \cot 2\theta = \cot \theta$ [3] (ii) Hence, find, in radians, the angle for which $\csc 2\theta + \cot 2\theta = 3\tan \theta$ where $0 \le \theta \le \pi$. [3]

The diagram shows three fixed points O, A and B such that OA = 15 cm and OB = 28 cm and $\angle AOB = \angle ADO = \angle OCB = 90^{\circ}$. The line OC makes an angle θ with the line OB, the angle θ can vary in such a

The line *OC* makes an angle θ with the line *OD*, the angle θ can vary in such a way that the point *D* lies along the line *OC*. Given that L = AD + DC + CB, (i) show that $L = (43\cos\theta + 13\sin\theta)$ cm, [3]

- (ii) express L in the form of $R\cos(\theta \alpha)$, where R is positive and
- (iii) find the value of θ for which L = 40 cm.

7.

3

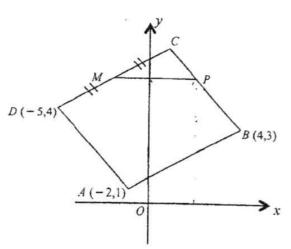
[2]

[3]

The equation of the curve is $y = kx^2 + 4x + 3 + k$, where k is a constant. 8.

(i)	Find the range of values of k for which the curve lies completely	
	above the x-axis.	[4]
(ii)	In the case where $k = 2$, find the values of <i>m</i> for which the line	r.1
	y = mx - 3 is a tangent to the curve.	[4]

9. Show that x-3 is the factor of the cubic polynomial $2x^3 - 9x^2 + 27$. (i)-Hence factorise completely $2x^3 - 9x^2 + 27$. [3] $(...,2)^2$


(ii) Express
$$\frac{(x+3)}{2x^3 - 9x^2 + 27}$$
 as the sum of 3 partial fractions. [5]

10.	The function f is defined by $f(x) = 2\cos^2 x - 6\sin^2 x$.			
	(i) Show that $f(x)$ can be expressed as $4\cos 2x - 2$.			
	(ii)	State the minimum value of $f(x)$.	[2] [1]	
	(iii)	State the period of $f(x)$.	[1]	
	(iv)	Sketch the graph of $y = f(x) $ for $0 \le x \le \pi$. Given that the number	L-J	
		of solutions of $ f(x) = c$ is equal to 4, find the range of values of c.	[3]	

11. In the diagram, ABCD is a parallelogram. The vertices A, B and D have coordinates (-2,1), (4, 3) and (-5, 4) respectively. M is the midpoint of CD.

A line is drawn from M parallel to the x- axis to cut the side BC at P. Find

- (i) the coordinates of C and M, [3] (ii) the equation of the line BC, [3] (iii) the coordinates of P, [2]
- (iv) the area of ABPMD.

[2]

- 12. (a) Sketch the graph of $y = x^{\frac{2}{3}}$.
 - (b) A circle, C_1 , has the equation $x^2 + y^2 6x + 8y 24 = 0$.
 - (i) Find and the coordinates of the centre of C₁ and the radius of the circle. [3]

A second circle, C_2 , has a diameter SR. The point R has coordinates (2,-2) and the equation of the tangent to C_2 at S is 4y-3x=36.

(ii) Find the equation of SR and hence, show that the coordinates of S is (-4, 6). [4]

(iii) Find the radius and the coordinates of the centre of C_2 . [2]

[2]

			Marks:	
	Subject:	Paper No:	Date:	
	Name:	Class:	No:	
	$\cos(\frac{51}{12}) = \cos(\frac{1}{2} + \frac{1}{6})$	Struote:	$512 = 52 \times (80^\circ)$ = 75°	
	= cos = cos = - sin = sin =	Ţ.	= 15° 3	
	cos(吾)= cos(年-吾)		= 45°+30°	
	- COS 译 COS 晋 + SIN 晋 SIN	nto (15°;	= 45°-30°	
	$-: \cos(\frac{5\pi}{2}) + \omega s(\frac{\pi}{2})$		- >	
	$= (\cos \mp \cos \mp - \sin \mp \sin \mp) + (\cos \mp)$	异cos于 + sin于sin	문)	
	= 2 cos = cos = .	A	Δ	
	= 2(古)(導)	12/1 2/	А Т Б Г З Т	
	= 13		3	
	$= \frac{13}{12}$ $= \frac{13}{2}$ (shown)			
2.	$\log_7 x - \log_{49} (x-2) = 1$	0921		
		0 + 10949 (x-2	2)	
		0		
	10g7 2 =	1097 (x-2) 1097 49	N	
		1097(x-2)		
		10g7 72		
		$lm_{\tau}(\tau-2)$		
		$log_{\mp}(x-2)$		
	$2 \ln \alpha \chi =$	1097 (X-2)		
		$= \log_{\frac{1}{2}}(x-2)$		
	γ^2	$= (x_{-2})$		
	$\therefore \chi^{2} = \chi - 2$ $\chi^{2} - \chi + 2 = O / /$			
	$Discriminant = (-1)^2 - 4(1)(2) = 1 - 8$)		
	= -7			
	,			
	Since discriminant <0, the	equation has no	o real	
	Solutions.			

For Let the height of the tank be h m. 3. Examiner's Use $(1+\sqrt{2})(3-\sqrt{3})(h) = 2$ $(3 - J\overline{8} + 3J\overline{2} - J\overline{16}) = 2$ (3 - 2E + 3E - 4)(h) = 2(Jz - 1)(h) = 2. $h = \frac{2}{\sqrt{2} - 1}$ $= \frac{2(J_2+1)}{(J_2+1)(J_2+1)}$ $=\frac{2\sqrt{2}+2}{2-1}$ = 2+252 = Height of tank is (2+2JZ) m. /. = COSECX-1 Cotx 4. = Cotx Cosecx-1 $\frac{\cot x (\cos e c x + 1)}{(\cos e c x + 1)(\cos e c x + 1)}$ Cosec²x -1 $\cot x (\operatorname{cosec} x + 1)$ $\cot^2 x$ cosec x +1 (proven) sinx +1 OSX SIN X . . . 1-sinx + sind 6521 COSI

	0.0			Marks:	
	Subject:		Paper No:	Date:	
(cont'd)	Name:		Class:	No:	
4	$\frac{1}{p} + p =$	I-sinx + Cosx +	1 t SMX COSX		For Examiner's Use
	p2	$(1 - \sin x) + 0$	+ sihx).		
	P P	Cos	X		
	$\frac{1+p^2}{p} =$	2.			
	ρ	Cast			
	$\cos x (Hp^2) =$	2p			
	.' COSX =	$= \frac{2p}{1+p^2}$			
		1/			
			8 7		
5(1)	y :	$= 2\chi - 5 - 3$			
	When $y=0$,				
		= 2x-5 - 3			
	3	$= 2\chi - 5 $			
	2x - 5 = 3	or	2x - 5 = -3		
	$2\chi = 8$		$2\chi = 2$		
	x=4		X =		
	-: The <i>x</i> -intorce	pts are (4,0) and (1,0);	
•	When $x = 0$,				
		1 = 2(0) - 5	-3		
		= 5 - 3			
		= 2			
	The y-intercep		2)		
			11		
			۷	>	-30

() Sketch: Y = [2x-5] For 5(ii) • When $\gamma = 0$ Examiner's Use 2x-5)=02x - 5 = 0 $\chi = 2\frac{1}{2}$ y= 2x-5 5 , 4 3 2 7× 0 21/2 (2) sketch: y = 12x-51-3 3 R y= 12x-51-3 2 This is the required sketch. 72 22 0 2 -3 (2:2,-3) , .

	0.0		Marks:	
	Subject:	Paper No:	Date:	-
	Name:	Class:	No:	
6(i)	$LHS = cosec 20 + cot 20$ $= \frac{1}{\sin 20} + \frac{\cos 20}{\sin 20}$			For Examiner's L
	$= \frac{1+\cos 2\alpha}{\sin 2\alpha}$	0		
	$= \frac{\cos^2 \alpha + \sin^2 \alpha + \cos^2 \alpha}{2 \sin \alpha \cos \alpha}$		•	
	$= \frac{2\cos^2 \Theta}{2\sin \Theta\cos \Theta}$ $= \frac{\cos \Theta}{\sin \Theta}$			
	$= \frac{1}{5mQ}$ $= Cot Q = RHS (f)$	proven),	, 	
(1)	cosec 20 + cot 20		-	
	cota =	A REAL PROPERTY AND ADDRESS OF THE OWNER AND ADDRESS OF THE OWNER ADDRES		
	$\frac{1}{\tan \alpha} =$	3 tanQ		
	3tan2Q =			
	$\tan^2 \alpha =$		(Die aundraute)	
	tan Q =		$\begin{pmatrix} 0 \text{ in quadrants} \\ 1, 2, 3 & 4 \end{pmatrix}$	
	Basic ∠ = tan	12 .	1.	
	= + 6			
	$Q = \overline{E}, \pi - \overline{E}, \pi$ $= \overline{E}, \overline{E}, \overline{E}, \overline{E}$	+ + , 211. 11I	- 46	
	- 6, 6 6) -6 ject :: 0 <0	<π)	
	.: Q= T, T,	jeur . 0.00		
	02 - 61 64		~	
		a a		
				$= \langle \rangle \rangle$

			Marks:	
	Subject:	Paper No:	Date:	
	Name:	Class:	No:	
8(i)	y = k	$\chi^2 + 4\chi + (3+k)$		For Examiner's U
	9	mpletely above x-axis, di	scrimmant <0	
		$^{2}-4(k)(3tk)<0$		
	16 -	$-12k - 4k^2 < 0$		54
	ŧ	$^{2}+3k-4 >0$		
	(k	-1)(k+4)>0.		
	+	+-+		
		-4 - 1	-	
	K <	4. or K>1, ->	: k>0 , k	>1
(11)	11-1	$Dx^2 + 4x + F$		
	0	$2x^{2}+4x+5-0$		
	Sub @ into(),	mx-3 (2)		
		$-3 = 2\chi^{2} + 4\chi + 5$		
		$x^2 + 4x - mx + 5 + 3 =$	0	
		$x^{2} + (4-m)\chi + 8 = 6$	the second s	
	For line to be tan	gent to curve, discrimi	nant = 0.	
		$(3^{2}-4(2)(8)=0$		
	16-8W	$1 + m^2 - 64 = 0$		
	m^2	-8m - 48 = 0		
	(m t)	4)(m-12)=0		
	.'. M	= -4 or 12/		
		1		
	•			
				-m

9(1)
$$\downarrow_{eff} f(x) = 2x^{3} - 9x^{2} + 27$$
.
 $f(3) = 2(3)^{3} - 9(3)^{*} + 27$
 $= 54 - 81 + 27$
 $= 0$
 $\therefore (\chi - 3)$ is a flactor of $f(x) \cdot (\text{Shown})$
 $f(x) = (\chi - 3)(2\chi^{2} + bx - 9)$
Comparing coefficient of x^{2} ,
 $-9 = -6 + b$
 $b = -3$
 $\therefore f(x) = (\chi - 3)(2\chi^{2} - 3\chi - 9)$
 $= (\chi - 3)(2\chi + 3)(\chi - 3)$
 $= (\chi - 3)^{2}(2\chi + 3)$
 $(11) (\chi + 3)^{2} = \frac{(\chi + 3)^{2}}{(\chi - 3)^{2}(2\chi + 3)}$
 $(12) (\chi + 3)^{2} = \frac{(\chi + 3)^{2}}{(\chi - 3)^{2}(2\chi + 3)}$
 $\downarrow_{eff} \frac{(\chi + 3)^{2}}{(\chi - 3)^{2}(2\chi + 3)} = \frac{A}{\chi - 3} + \frac{B}{(\chi - 3)^{2}} + \frac{C}{2\chi + 3}$
 $(\chi + 3)^{2} = A(\chi - 3)(2\chi + 3) + B(2\chi + 3) + C(\chi - 3)^{2}$
When $\chi = 3$,
 $(\chi + 3)^{2} = 0 + B[2(3) + 3] + 0$
 $36 = 9B$
 $6 = 4$
When $\chi = -\frac{3}{2}$
 $(-\frac{3}{2} + 5)^{2} = 0 + 0 + C[(-\frac{3}{2}) - 3]^{2}$
 $\frac{9}{4} = \frac{81}{4}C$
 $C = \frac{9}{4}$

******* MG

			Marks:	
58	Subject:	Paper No:	Date:	
(cont'd)	Name:	Class:	No:	
9(11)	When $x = 0$,			For Examiner's Use
	$(0+3)^2 = A(-3)(3) +$	4(3) + + + (-	-3)~	Examiner 5 05e
	9 = -9A + 12 + 12	-		
	-4 = -9A			
	A = 4			
	$(x+3)^2$ 4	4)	
	$\frac{(\chi+3)^2}{2\chi^3-9\chi^2+27} = \frac{4}{9(\chi-3)} +$	$(\chi - 3)^2$	9(2x+3) //	
10(i)	$2\cos^2 x - 6\sin^2 x = 2\cos^2 x$	$-6(1-\omega s^{2})$	x)	
1		$-6 \pm 6 \cos^2$	· · · · · · · · · · · · · · · · · · ·	
	$= \mathcal{F}\cos^2 x$	- 6		
	$= 4(2\omega s)$,²x)-6		
9	$= 4(\cos 2)$	2x+1) - 6		
	$= 4\cos 2$			
	$= 4\cos^2$	x - 2 (shi	own) /,	
(11)	$-1 \leq \cos 2\chi \leq$	1	5 T	
	$-4 \leq 4\cos 2x$	<u> </u>		
	$-6 \leq 4\cos 2x - 2$	4 ≤ 2		
	. Minimum value of fra	x) is -6		
(îii)	period = $\frac{2\pi}{2}$			
	$=\pi$			
		-	7	
				-3
				-

 $Y = 4\cos 2x - 2$, $0 \le x \le \pi$ (contid) For 10(iv)Amplitude = 4 Examiner's Use * Recall: Period = T Draw y= 40052x-2 first. Range: $-6 \leq f(x) \leq 2$ - Then draw Ifall. y - Erase unwarded part of graph. 5 4 3 × y= 14cos2x-21 2 YX EN 354 0 H 1 π Note: 7 leftaca guide. TOERASE after drawing ifex) 5 To obtain 4 solutions, the line y=c must cut the |f(z)| graph at 4 points. $0 < C \leq 2//$

	000		Marks:	
	Subject:	Paper No:	Date:	
	Name:	Class:	No:	
1](i)	het coordinates of C be (e	,f).		For Examiner's Use
	$\frac{\text{midpoint of AC} = n}{\left(\frac{-2+e}{2}, \frac{1+f}{2}\right)} =$			
			2)	
	$\frac{-2+e}{2} = \frac{4+(-5)}{2}$	$\frac{1+f}{2} = \frac{1}{2}$	2	
	-2+e = -1	1++ = 7-		
	e =	F = 6		
	Wordinates of	Care (1,6)	
			1	
	Midpoint of CD, M -==	$-\left(\frac{-5+1}{2}\right)^{2}$	$\left(\frac{1+1}{2}\right)$	
		= (-2,5)		
	: coordinates of Ma			
		, , , , , , , , , , , , , , , , , , ,		
(ii)	Gradient of $BC = \frac{6-3}{1-4}$	_		
	= -1			
	<u>y-3</u> z-4 = -1			
	2-4 - 1			
	y - 3 = -(x - 4))		
	y = -x + 4	+3		
	$\therefore y = -x + 7$			
	Equation of BC is	y = -x + 7		
	V			
				D
				4

(Cont'd) Since MP is // to x-axis, equation of line MP For $\|(iii)\|$ Examiner's Use is y=5. Suby=5 in y=-x+7, 5=-2+7 X=2. -: coordinates of Pare (2,5). 1 Area ABPMD = $\frac{1}{2} - \frac{2}{3} - \frac{2}{5} - \frac{2}{-2} - \frac{2}{-2}$ (iv) $= \frac{1}{2} \left[(-6) + 20 + 10 + (-8) + (-5) - 4 - 6 - (-10) - (-25) - (-8) \right]$ 1 [11 + 33] = 22 units // $\begin{array}{r} y = \chi^{\frac{2}{3}} \\ = \sqrt[3]{\chi^2} \end{array}$ 12(0) NY - y= x3 C

	919		Marks:	
Subject:		Paper No:	Date:	
Name:		Class:	No:	
12(bi)	$\chi^{2} + \gamma^{2} - 6\chi$	(+8y-24=0)		For Examiner's Use
	1	$-(\frac{-6}{2})^2+y^2+8y+($	$\left(\frac{8}{2}\right)^2 - \left(\frac{8}{2}\right)^2 - 24 =$	
		$(y+4)^2 - 16 - 24$		
		$f(y+4)^2 - 49 =$		
	(x-3)	2 + (y+4) ² = 4°	7	
	coordinates of	f centre of C,	are (3,-4).	
		$C_1 = \sqrt{49}$	/	
		= 7 units		
(2,-2)	14.1.2.1.2	2/		
(ii) R	/4y-3x=	36		5 5 C
		4y - 3x = 36		
	/S	4y = 3x + 3		
		y= = +x+		
	/ Gra	adrevit of tangevit	$at S = \hat{a}$	
	Grad	drent of $RS = -($		n-Lrad.
		• = -	43	
	<u>y</u> -(-2)	- 4		
	2-2	3		
	y+2	$= -\frac{4}{3}(\chi - 2)$		
	($y = -\frac{4}{3}\chi + \frac{8}{3}$ $y = -\frac{4}{3}\chi + \frac{3}{3}$	-2	
		$y = -\frac{1}{3}x + \frac{1}{3}$		
	. Equation of 1	PS is $y = -\frac{4}{3}$	1+3.	
			>	
				-30)-

(cont'd $y = \frac{3}{7}x + 9 - 0$ $y = -\frac{4}{3}x + \frac{3}{3} - 2$ Sub· 0 into 2, $\frac{3}{7}x + 9 = -\frac{4}{3}x + \frac{3}{3}$ $\frac{25}{12}x = -\frac{25}{3}$ For 12b(11) Examiner's Use $\chi = -4$ Sub x = -4 into D, $y = \frac{3}{4}(-4) + 9$ y= -3+9 -: y = 6 Hence, coordinates of S are (-4,6). (shown) (iii) centre of C2 = midpoint of RS $=\left(\frac{2+(-4)}{2}, \frac{-2+6}{2}\right)$ =(-1,2)-: coordinates of centre of Cz are (-1,2); Radius of $C_2 = \sqrt{(-1-2)^2 + [2-(-2)]^2}$ = 525 5 units Ξ ÷ . . ,